丁香婷婷激情四射|经典成人无码播放|欧美性大战久久久久久久安居码|日韩中文字幕大全|加勒比久久高清视频|av在线最新地址|日本少妇自慰喷水|在线天堂国产免费一区视频社区在线|色欲蜜臀一区二区|偷拍女厕一区二区亚瑟

歡迎訪問漢海網(wǎng),帶你進(jìn)入知識(shí)的海洋!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)考點(diǎn)總結(jié)

天下 分享 時(shí)間: 瀏覽:0

數(shù)學(xué)這個(gè)科目一直是同學(xué)們又愛又恨的科目,學(xué)的好的同學(xué)靠它來與其它同學(xué)拉開分?jǐn)?shù),學(xué)的差的同學(xué)則在數(shù)學(xué)上失分很多;在平時(shí)的學(xué)習(xí)和考試中同學(xué)們要善于總結(jié)知識(shí)點(diǎn),這樣有助于幫助同學(xué)們學(xué)好數(shù)學(xué)。下面就是小編給大家?guī)淼母咧袛?shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn),希望能幫助到大家!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)1

集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。

例如:

1、分散的人或事物聚集到一起;使聚集:緊急~。

2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

集合與集合之間的關(guān)系

某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

(說明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號(hào)下加了一個(gè)符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)2

冪函數(shù)定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

冪函數(shù)性質(zhì):

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于x

排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點(diǎn)。

(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

(6)顯然冪函數(shù)無界。

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)3

導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)4

1.并集

(1)并集的定義

由所有屬于集合A或?qū)儆诩螧的元素所組成的集合稱為集合A與B的并集,記作A∪B(讀作"A并B");

(2)并集的符號(hào)表示

A∪B={x|x∈A或x∈B}.

并集定義的數(shù)學(xué)表達(dá)式中"或"字的意義應(yīng)引起注意,用它連接的并列成分之間不一定是互相排斥的.

x∈A,或x∈B包括如下三種情況:

①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.

由集合A中元素的互異性知,A與B的公共元素在A∪B中只出現(xiàn)一次,因此,A∪B是由所有至少屬于A、B兩者之一的元素組成的集合.

例如,設(shè)A={3,5,6,8},B={4,5,7,8},則A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

2.交集

利用下圖類比并集的概念引出交集的概念.

(1)交集的定義

由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集,記作A∩B(讀作"A交B").

(2)交集的符號(hào)表示

A∩B={x|x∈A且x∈B}.

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)5

反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

反函數(shù)求導(dǎo)方法

若F(X),G(X)互為反函數(shù),

則:F'(X)_G'(X)=1

E.G.:y=arcsin_=siny

y'_x'=1(arcsinx)'_(siny)'=1

y'=1/(siny)'=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-x^2)

其余依此類推

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)考點(diǎn)總結(jié)相關(guān)文章:

1.2020高二數(shù)學(xué)水平考知識(shí)點(diǎn)歸納

2.高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享

3.高二數(shù)學(xué)必考知識(shí)點(diǎn)精選5篇總結(jié)

4.人教版高一數(shù)學(xué)必考知識(shí)點(diǎn)歸納

5.高中數(shù)學(xué)高考知識(shí)點(diǎn)歸納

6.精選高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)三篇

7.高中高考數(shù)學(xué)知識(shí)點(diǎn)最新精選總結(jié)

8.高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)三篇

9.2020高中數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選

10.高考數(shù)學(xué)知識(shí)點(diǎn)大全

本站部分文章來自網(wǎng)絡(luò)或用戶投稿。涉及到的言論觀點(diǎn)不代表本站立場(chǎng)。閱讀前請(qǐng)查看【免責(zé)聲明】發(fā)布者:天下,如若本篇文章侵犯了原著者的合法權(quán)益,可聯(lián)系我們進(jìn)行處理。本文鏈接:http://www.256680.cn/senior/gaokao/1396.html

221381